A Florida-James, E. Guillo-Sansano, M. Syed, Q. Hong, P. Dambrauskus, S. Blair, G. Burt Institute for Energy and Environment, University of Strathclyde, Glasgow.

VALIDATING DECENTRALISED FREQUENCY CONTROL REGIMES: A DISTRIBUTED HARDWARE IN THE LOOP APPROACH

Introduction

- An increasing level of complexity is associated with power system operation, with increased levels of distributed generation contributing to this.
- Reduced levels of system inertia are emerging as synchronous plant closes in the GB grid.
- Novel control schemes can increasingly be validated using proven systems testing HIL infrastructure like the University of Strathclyde's Dynamic Power System Lab (DPSL) and Power Network Demonstration Centre (PNDC).
- The scalability of increasingly decentralized schemes places new demands on infrastructures, causing increased interest in distributed experimentation.

Overview of Distributed HIL Approach

GB Frequency Problem

 Increasing number of distributed resources and large synchronous plant closing leads to the following: →increased RoCoF

- \rightarrow Frequency/voltage instability \rightarrow Controller interaction \rightarrow Sub-synchronous
- oscillations and interaction with conventional machines

 \rightarrow Increased sensitivity

Fig. 1 Minimum System Inertia (Source: SOF 2015)

Novel Frequency Controllers

- Web-of-Cells (WoC) and Enhanced Frequency Control Capability (EFCC) projects – two novel solutions to GB frequency problem
- WoC distributed and decentralised control paradigms within each cell enables more effective and scalable frequency regulation
- A "responsibilizing" frequency control approach enables cells to address frequency events locally, with resources in the cell \rightarrow has been demonstrated at the DPSL with hardware in the loop (HIL)

- facilities.
- HIL delays within each platform: inherent in measurement, computing, and communications.
- Communication delays between each platform/facility
- Challenges with variable inherent delays + inter-facility delays.

Power-HIL (P-HIL) Time Delay Challenges, Solutions, and Distributed Real-Time HIL Results

• Contrary to widely deployed fixed determnistic delay, P-HIL delay is variable.

• Using multiple platforms enables

system area, as seen in Fig. 6

• Monolithic testing involves one

• Distributed testing involves more

one facility or between multiple

platform (e.g. Using RTDS/model)

than one platform \rightarrow can be within

more computing power per virtual

 $\sum A_h \sin(\omega_h t)$ $\sum A_h \sin(\omega_h t + \varphi_h)$ Reconstruction $+ \varphi_{comp_h}$ into time SDFT

• Transient phase offset (TPO) droop based method shown to provide improved regulation when compared to existing droop

- EFCC: RoCoF triggered, regional, 100% active power < 1 second (target) 500 ms).

- This delay needs to be accurately characterised to enable accurate compensation – otherwise instability occurs.
- Proposed technique developed offers improved accuracy and achieves stability
- Consequently, the advanced time delay compensation facilitates more accurate system-level studies e.g. Increased fidelity GB network studies.
- Benefits of utilising distributed HIL within the context of frequency response shown in Fig. 10. with effects of inter-platform delays shown

Fig. 9 Current: with and without delay compensation

Fig. 10 Increased fidelity using RT hardware in the loop; D1-D3 represent different delays

Real time digital simulation (RTDS) GB network model coupled with 11 kV network at PNDC

Simulated resource **IEC 61850 GOOSE** LC1 Resource Wide Area information LC2 ommunication Network Emulated CS IEEE C37.118.2 Modbus PMU P-HiL synchronisation PNDC Physical PMU resource -O-Load (M)**__**(G) 11/0.4kV banks MG 11/11kV Fig. 5 EFCC set up

Conclusions

- Novel frequency control regimes have been tested and evaluated to good effect on RT HIL infrastructures.
- Distributed HIL schemes enable utilization of multiple facilities simultaneously for increased computing power: the developed platform successfully deals with P-HIL delay issues
- The platform offers improved fidelity by combining computing power at multiple facilities.
- Complexity and increasingly decentralized nature of power system problems being tackled within HIL environment is also increasing: combined computing resource extremely useful in addressing these problems
- Future work will investigate and further understand outstanding issues whilst using the multi-platform distributed RT simulation environment, to validate novel controllers as part of the ERIGRID project

