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Introduction

An increasing level of complexity is associated with power system
operation, with increased levels of distributed generation contributing to
this.

Reduced levels of system inertia are emerging as synchronous plant
closes in the GB grid.

Novel control schemes can increasingly be validated using proven
systems testing HIL infrastructure like the University of Strathclyde’s
Dynamic Power System Lab (DPSL) and Power Network
Demonstration Centre (PNDC).

The scalability of increasingly decentralized schemes places new
demands on Iinfrastructures, causing increased Iinterest in distributed
experimentation.

GB Frequency Problem

* Increasing number of distributed resources and large synchronous

Inertia (GVA.s)

plant closing leads to the following:
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Fig. 1 Minimum System Inertia (Source: SOF 2015)

Novel Frequency Controllers
* Web-of-Cells (WoC) and Enhanced Frequency Control Capability (EFCC)

projects — two novel solutions to GB frequency problem

* WoC distributed and decentralised control paradigms within each cell

enables more effective and scalable frequency regulation

* A “responsibilizing” frequency control approach enables cells to address

frequency events locally, with resources In the cell 2 has been
demonstrated at the DPSL with hardware in the loop (HIL)

* Transient phase offset (TPO) droop based method shown to provide
iImproved regulation when compared to existing droop
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Fig.2 WoC representation of the GB grid Fig. 4 Improved frequency response using

decentralised TPO method

EFCC: RoCoF triggered, regional, 100% active power < 1 second (target
500 ms).

Real time digital simulation (RTDS) GB network model coupled with 11 kV
network at PNDC
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Fig. 5 EFCC set up
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Overview of Distributed HIL Approach
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Using multiple platforms enables facilities.
more computing power per virtual « HIL delays within each platform:

system area, as seen in Fig. 6 inherent in measurement,
Monolithic testing Iinvolves one computing, and communications.
platform (e.g. Using RTDS/model) « Communication delays between
Distributed testing involves more each platform/facility

than one platform - can be within  « Challenges with variable inherent
one faclility or between multiple delays + inter-facility delays.

Power-HIL (P-HIL) Time Delay Challenges, Solutions, and
Distributed Real-Time HIL Results
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Conclusions

Novel frequency control regimes have been tested and evaluated to good
effect on RT HIL infrastructures.

Distributed HIL schemes enable utilization of multiple facilities
simultaneously for increased computing power. the developed platform
successfully deals with P-HIL delay issues

The platform offers improved fidelity by combining computing power at
multiple facilities.

Complexity and increasingly decentralized nature of power system
problems being tackled within HIL environment is also increasing: combined
computing resource extremely useful in addressing these problems

Future work will investigate and further understand outstanding issues
whilst using the multi-platform distributed RT simulation environment, to

validate novel controllers as part of the ERIGRID project
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